Functional Implications of MicroRNA-215 in TGF-β1-Induced Phenotypic Transition of Mesangial Cells by Targeting CTNNBIP1
نویسندگان
چکیده
Mesangial cell (MC) phenotypic transition is crucial for the progression of diabetic nephropathy. A major stimulus mediating high glucose-induced MC phenotypic transition is TGF-β1. Our current study focuses on microRNA-215 (miR-215) and investigates its role in TGF-β1-mediated MC phenotypic transition. Using real-time quantitative PCR (qRT-PCR) and northern blotting, we determined that the miR-192/215 family is dramatically upregulated under diabetic conditions both in vitro and in vivo. Gain- and loss-of-function approaches demonstrated that miR-215 inhibition significantly inhibited TGF-β1-induced mouse mesangial cell (MMC) phenotypic transition, whereas miR-215 upregulation promoted MMC phenotypic transition. Interestingly, these changes were not detected in cells that were treated with TGF-β1 and miR-192 mimics or inhibitors. These results suggest that miR-215 participates in TGF-β1-induced MMC phenotypic transition. Luciferase reporter assays were used to identify whether catenin-beta interacting protein 1 (CTNNBIP1) is a direct target of miR-215, which was predicted by bioinformatic analysis. Mechanistic studies revealed that CTNNBIP1 suppresses Wnt/β-catenin signaling and that miR-215 promotes β-catenin activation and upregulates α-SMA and fibronectin expression in TGF-β1-treated MMCs by targeting CTNNBIP1. In addition, in vivo miR-215 silencing with a specific antagomir significantly increased CTNNBIP1 protein expression, resulting in reduced β-catenin activity and decreased α-SMA and fibronectin expression in db/db mouse kidney glomeruli. Taken together, our findings indicate that miR-215 plays an essential role in MC phenotypic transition by regulating the CTNNBIP1/β-catenin pathway, which is related to the pathogenesis of diabetic nephropathy.
منابع مشابه
MiR-215, an activator of the CTNNBIP1/β-catenin pathway, is a marker of poor prognosis in human glioma
MicroRNA-215 (miR-215) promotes tumor growth in various human malignancies. However, its role has not yet been determined in human glioma. Here, we found that levels of miR-215 were higher in glioma tissues than in corresponding non-neoplastic brain tissue. High miR-215 expression was correlated with higher World Health Organization (WHO) grades and shorter overall survival. Multivariate and un...
متن کاملMangosteen peel extract (Garcinia mangostana L.) as protective agent in glucose-induced mesangial cell as in vitro model of diabetic glomerulosclerosis
Objective(s): This study aims to evaluate the activity of mangosteen peels extract (MPE) as protection agent on induced-glucose mesangial cells (SV40 MES 13 cell line (Glomerular Mesangial Kidney, Mus Musculus)). Materials and Methods: MPE was performed based on maceration method. Cytotoxic assay was performed based on MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophen...
متن کاملConnective tissue growth factor antagonizes transforming growth factor-β1/Smad signalling in renal mesangial cells.
The critical involvement of TGF-β1 (transforming growth factor-β1) in DN (diabetic nephropathy) is well established. However, the role of CTGF (connective tissue growth factor) in regulating the complex interplay of TGF-β1 signalling networks is poorly understood. The purpose of the present study was to investigate co-operative signalling between CTGF and TGF-β1 and its physiological significan...
متن کاملHuman Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation
Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...
متن کاملDifferential effects of Smad3 targeting in a murine model of chronic kidney disease
Transforming growth factor (TGF)-β1 has a pivotal role in the pathogenesis of progressive kidney diseases that are characterized by fibrosis. The main intracellular signaling pathway of TGF-β1 is the Smad system, where Smad2 and Smad3 play a central role in transcriptional regulation of target genes involved in extracellular matrix (ECM) metabolism. This study analyzes the hypothesis that block...
متن کامل